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Abstract

The ASTRAL real-time formal specification language has been encoded into the PVS theorem prover.  A

translator has been developed to completely translate any single-level ASTRAL specification into its

corresponding PVS encoding.  The semantics of the ASTRAL abstract machine have been revised and

expanded for use with PVS.  This paper describes the encoding and semantics and explains their use

along with providing other possible applications of the encoding.

Introduction

A real-time system is a system whose actions must be performed within certain time bounds in order to

guarantee correct behavior.  With the advent of cheap processing power and increasingly sophisticated

consumer demands, real-time systems have become commonplace in everything from refrigerators to

automobiles.  Besides such numerous everyday uses, real-time systems are also being employed in more

complex and potentially deadly applications such as weapons systems and nuclear reactor control where

deviation from critical timing requirements can result in disastrous loss of lives and/or property.  It is thus

desirable to extensively test and verify the designs of these systems to gain assurance that such disasters

will not occur.  A number of formal methods for real-time systems have been proposed [HM 96] that

provide a framework under which developers can eliminate ambiguity, reason rigorously about system

design, and prove that critical requirements are met using well-defined mathematical techniques.  Real-

time systems are characterized by concurrency, asynchrony, nondeterminism, and dependence upon the

external operating environment.  Thus, the formal proofs of even simple real-time systems can be

nontrivial.  To make the verification of real-world real-time systems practical, mechanical proof assistance

is necessary.

One such form of assistance is an interactive theorem prover.  Interactive theorem provers provide

mechanical support for deductive reasoning.  Each theorem prover is associated with a specification

language in which a system and associated theorems are expressed.  A theorem prover uses a collection of

axioms and inference rules about its specification language to reduce a high-level proof into simpler

subproofs that can eventually be discharged by basic built-in decision procedures that support arithmetic

and boolean reasoning.  Theorem provers provide a number of forms of assistance, which include

preserving the soundness of proofs, finishing off proof details automatically, keeping track of proof status,

and recording proofs for reuse.
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Rather than implementing a theorem prover for ASTRAL from scratch, it was decided to take advantage

of an existing general purpose theorem prover modified for use with ASTRAL.  A number of general

purpose theorem provers were considered, including PVS [COR 95], ACL2 [KM 96], and HOL [GM 93].

Among these, PVS was considered ideal for ASTRAL given its powerful typing system, higher-order

facilities, heavily automated decision procedures, and intuitive reasoning style.  Comparisons between

PVS and other theorem provers can be found in [CM 95], [Gor 95], and [You 96].

This paper discusses the adaptation of the PVS theorem prover for performing analysis of real-time

systems written in the formal specification language ASTRAL [CGK 97].  ASTRAL formulas may

contain arbitrary first-order logic expressions involving ASTRAL-specific operators and variables of

complex types.  A translator has been written that can completely translate any single-level ASTRAL

specification into its corresponding PVS encoding.  The semantics of ASTRAL have been revised and

expanded for use with PVS.  Some small example systems have been proved using the encoding.

Additionally, the encoding has been used as the basis for other tools, such as a transition sequence

generator.  The translator and PVS add theorem proving capabilities to the ASTRAL Software

Development Environment [KK 97], which additionally consists of a syntax-directed editor, a

specification processor, a specification testing component, and a browser kit.

PVS

The Prototype Verification System (PVS) [OSR 93c] is a powerful interactive theorem prover based on

typed higher-order logic.  A PVS specification [OSR 93b] consists of a modular collection of theories.  A

theory may be parameterized to support polymorphism.  Declarations in one theory can be referenced in

another theory by using an importing clause.  Parameterized theories can be imported either with explicit

parameters or without parameters.  If left without parameters, PVS attempts to instantiate the theory based

on the use of its declarations within the importing theory.  Most single parameter theories can be

instantiated automatically by PVS, but theories with complex or multiple parameters often need to be

instantiated explicitly in the referring theory.

A PVS theory declaration consists of a set of types, constants, axioms, and theorems.  PVS has a very

expressive typing language, including functions, arrays, sets, tuples, enumerated types, and predicate

subtypes.  Types may be interpreted or uninterpreted.  Interpreted types are defined based on existing

types, while uninterpreted types must be defined axiomatically.  Predicate subtypes are types that must

satisfy a given constraint.  For example, the even numbers can be defined:

even_int:  TYPE = {i: int | (EXISTS (j: int): 2 * j = i)};

For any assignment or substitution that involves a predicate subtype, PVS generates type correctness

conditions (TCCs), which are obligations that must be proved in order for the rest of the proof to be valid.

For example, consider the following declarations:
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e_plus_2(e: even_int): even_int = e + 2;

PVS generates the following TCC for the definition of i_to_e2:

% Subtype TCC generated (line 7) for  e + 2
    % unfinished

e_plus_2_TCC1: OBLIGATION
(FORALL (e: even_int): (EXISTS (j: int): 2 * j = e + 2));

That is, it must be shown that adding two to an even number is still an even number.  Otherwise, the

definition of e_plus_2 violates its stated type.

Like types, constants can either be interpreted or uninterpreted.  The value of an interpreted constant is

stated explicitly, whereas only the type of an uninterpreted constant is given.  For example, the definition

of push in

stack:  TYPE = list[T];
push(e: T, s: stack): stack = cons(e, s);

is an interpreted constant, because the exact effect of a push statement can be determined by expanding its

definition.  The definition of push in

stack:  TYPE;
push:  [[T, stack] → stack];

is uninterpreted because all that is known about push is that applying it to a tuple of type [T, stack] returns

a stack of unknown content.  In the former definition, the exact consequence of the push operation is

given.  To express properties about an uninterpreted constant, however, axioms must be used.  For

example, in the previous declaration, the following would be appropriate:

top_of_push:  AXIOM
top(push(e, s)) = e

This states that no matter how stack, push, and top are implemented, applying top to the stack resulting

from a push operation will result in the element just pushed.  In general, axioms describe anything that is

considered to be a “truth” in a theory.  Besides types, constants, and axioms, the other basic component of

a theory are theorems, which are hypotheses that are thought to be true, but that need to be proven with

the help of the prover.

When the PVS prover [OSR 93a] is invoked on a theorem, the theorem is displayed in the form of a

sequent.  A sequent consists of a set of antecedents and a set of consequents, where if A1, ..., An are

antecedents and C1, ..., Cn are consequents in the current sequent, then the current goal is (A1 & ... & An)

→ (C1 | ... | Cn).  Thus, a sequent is true if (1) there exists an i such that Ai is false, (2) there exists an i

such that Ci is true, or (3) there exists a pair (i, j) such that Ai = Cj.  A sequent may be split into two or

more subgoals by splitting the conjuncts of the sequent using the split command or by introducing cases

explicitly with the case command.  PVS maintains a proof tree, consisting of all of the subgoals generated

during a proof.  Initially, when the prover is invoked on a theorem, the proof tree consists of only the

sequent form of that theorem.  As the proof proceeds, subgoals may be generated and proved.  To prove
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that a particular goal in the proof tree holds, all its subgoals must be proved to hold.  PVS allows the user

to define strategies, which are collections of prover commands that can be developed to automate

frequently occurring proof patterns.

ASTRAL Semantics

Before ASTRAL could be encoded into PVS, it was necessary to determine its precise formal semantics.

Since the semantics of ASTRAL had been addressed previously in [CKM 94] and [CSK 94], the first

thought was to simply translate these definitions.  Unfortunately, both sets of semantics were determined

to be inadequate for translation into PVS.  In [CKM 94], an axiom system is introduced for the ASTRAL

abstract machine.  While investigating its definition for use with PVS, however, the axiom system given

was determined to be neither sound nor complete.  For the invariant proofs, three axioms are given stating

(1) that the end of a transition occurs at its given duration after the last start, (2) that when a process is

idle and some transition is enabled, then some transition fires, and (3) that transitions are nonoverlapping

on a single process instance.  For the schedule proofs, four axioms are given, which include the three

axioms of the invariant proofs, with the definition of “enabled” in (2) modified to include requiring a call

to have been issued, along with a fourth axiom describing what it means for a call to have been issued.

Consider the following process:

Process P
Export

T
Constant

dur: posreal
Transition T   [TIME: dur]

Entry
TRUE

Exit
TRUE

End P

Under the axiom system in [CKM 94], it is possible to prove the following invariant:

Start(T, now - dur) → Start(T, now)

That is, that T fires cyclically every dur time units.  This is provable because by the invariant axioms, if T

starts dur time in the past, then P is idle at the current time.  Since the invariant axioms do not mention

calls at all, T is enabled at the current instant, since its entry assertion is true and there is only one

transition in P, so T must fire.  Thus, the invariant holds.  The invariant should not hold, however,

because T is an exported transition and thus can only start after it has been called from the environment.

An invariant must hold regardless of the operating environment, and since one possible environment is

that T is not called between now - dur and now, the invariant is false.  Since the invariant could be proven

from the axioms, however, the axiom system is unsound.
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The axiom system is also incomplete in several ways.  For example, there is no way to derive that if a

transition starts, then its entry assertion held at that time.  This is because the firing axiom is an

implication instead of an if and only if, so it can only be derived that if a transition is enabled, it might

fire and not vice versa.  It also lacks any axioms about transitions imported from other processes.  Even

though processes are essentially independent entities, there are still some facts that may be derived about

imported transitions in all cases.  For example, it is known that imported transitions are nonoverlapping

on the same process instance.  In [CKM 94], only local transitions were formalized in this manner.

Before ASTRAL could be encoded into the PVS logic, the definition of the ASTRAL semantics needed to

be revised.

In [CSK 94], axiomatic and model-theoretic semantics for ASTRAL are given.  Most of the axioms and

inference rules defined, however, are for the base logic of ASTRAL.  That is, they provide a framework

for interpreting the well-formed formulas of ASTRAL.  For example, the domain of time is addressed as is

the meaning of temporal formulas that reference variable values at times beyond the current instant (i.e.

now) and the corresponding three-valued logic that is necessary to interpret formulas containing these

“undefined” values.  The base logic, however, does not include the abstract machine of ASTRAL, which is

also addressed in [CSK 94], but suffers from many of the same problems as those in [CKM 94].

The axiom system defined for the base logic is proved sound and relatively complete.  For this reason, it

was desired to encode these semantics straight into PVS to take advantage of the already existing proofs.

Unfortunately, it was not obvious how some of the axioms and inference rules could be encoded.  For

example, some of the axioms are context dependent.  That is, there must be some examination of the

formulas involved in the axioms before they can be applied.  One such axiom is that “past(FORALL x A,

v)” is equivalent to “FORALL x past(A, v)” if x is not free in v.  Another example is that a formula is

defined if it does not contain any occurrences of past(w, v).  For these axioms, it is clear when they can be

applied during proofs “by hand”, but it is not clear how the underlined portions can be encoded directly

into the language of a mechanical theorem prover without severely compromising the readability of the

encoding.

In addition to the difficulty just described, it was also somewhat undesirable to have to encode all of the

axioms and inference rules for the ASTRAL base logic, since most of them are essentially just those of

first-order logic.  PVS already has first-order logic axioms and inference rules defined internally so it was

preferable to take advantage of the already available PVS framework.  Unfortunately, unlike some other

theorem provers, PVS does not support partial functions, so the undefined element used in the three-

valued logic definition of ASTRAL cannot be defined directly in the underlying PVS logic without

introducing a new three-valued domain.  As mentioned earlier, however, PVS does have a very powerful

predicate subtyping system that allows functions to be declared with domains of only those elements

satisfying a given predicate, such as only those elements for which a function is well defined.
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Another consideration in the encoding of ASTRAL into PVS was encoding the ASTRAL operators that

take formulas as operands (i.e. those operators that do not immediately evaluate their operands).  The past

operator is a prime example.  The past operator, past(A, t), takes an expression A and a time t and returns

the value that A had at t.  Unlike a “traditional” function, such as addition, in which the operands can be

evaluated immediately, the evaluation of the expression operand of the past operator must be delayed until

its parent context is determined.  In a past expression, the parent context refers to the value of “now” in

the expression.  For example, let now0 be the current time in the system.  The parent context of the

expression “past(past(x, now-1), now-1)” is now0.  The parent context of the operand “past(x, now-1)”,

however, is now0 - 1, and similarly for “x”, the parent context is now0 - 2.  Thus, “past(past(x, now-1),

now-1)” should evaluate to the value of x at time now0 - 2.  [CSK 94] defines the axioms associated with

the past operator, so that the correct value can be derived.

Previous PVS Efforts

Two different approaches have been used to handle unevaluated expression operands in PVS.  In encoding

the TRIO language [GMM 90] into PVS, a similar problem was encountered.  The TRIO dist operator

takes a TRIO formula and a time and returns the value that the formula had at the time given.  dist is very

similar to past in that the expression given as the first operand cannot be evaluated until its context is fully

defined in the parent expression.  In [AGM 97], an uninterpreted “TRIO_formula” type is introduced to

encode dist.  The dist operator is defined as a function of type [[TRIO_formula, time] → TRIO_formula].

Thus, dist(dist(A, t1), t2) is a well-defined function producing a TRIO_formula.  Then, axioms similar to

those defined for the past operator in [CSK 94] are defined to transform elements of type TRIO_formula

to other elements of type TRIO_formula.  Eventually, there must be some valuation from TRIO_formulas

to “real-world” values (i.e.  booleans, integers, etc.).  Thus, a function “now” (not related to the ASTRAL

now) is defined that takes a TRIO_formula and produces the corresponding boolean value assuming an

initial context of the current time instant.

The TRIO-PVS approach could also have been utilized for the ASTRAL-PVS encoding.  It was felt,

however, that there were several disadvantages to this approach in the case of ASTRAL.  In order to

evaluate expressions involving operators such as past, axioms of the form:

eval_past_plus: AXIOM
eval(Past(f1 + f2, t)) = eval(Past(f1, t)) + eval(Past(f2, t))

would need to be added for every operator in the language.  Unlike the TRIO dist operator, which always

returns a boolean, the past operator can return any type defined in a specification.  Thus, although the use

of parameterized theories would help somewhat, the writing of these axioms, not to mention their eventual

use, would be a very onerous task.  Besides all of these “eval” axioms, all axioms and inference rules of

first-order logic would also have to be encoded, since PVS can’t explicitly manipulate uninterpreted

expressions.  It is undesirable to introduce so many axioms as it becomes more and more confusing to the
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user as to which axiom is appropriate for which situation.  In the ASTRAL encoding, the desire was to

keep the axiom set as small and manageable as possible and to rely on the existing PVS framework.

Another disadvantage of the TRIO encoding is that many of the typing facilities of PVS cannot be

utilized.  Since the declaration of an “ASTRAL_formula” type would need to be uninterpreted, PVS

would not be able to decide anything about them.  This means that instead of utilizing the PVS subtyping

system to restrict operator domains appropriately, the three-valued logic of ASTRAL would have to be

explicitly encoded into PVS, resulting in more axioms.  It is also more difficult to use function definitions

with uninterpreted types, because PVS cannot know when something should be evaluated or not because it

does not know anything about its type.

In TRIO, the current time is always implicit, hence the TRIO-PVS encoding was designed to keep the

current time implicit.  In ASTRAL, however, the current time can be referenced explicitly by using the

variable now.  Additionally, the past operator references an absolute time and not a time with respect to

the current time.  That is, in TRIO, dist(A, d) is the value of the expression A at d time from the current

time into the past or future depending on whether d is negative or positive.  In ASTRAL, however, past(A,

t) refers to the value of the expression A at time t in the system.  Note that there is no reference to the

current time in this definition.  Thus, in fact, the current context of an ASTRAL expression must in some

cases be known explicitly.

The Duration Calculus (DC) [ZHR 91] is another real-time language that has been encoded into PVS.

Like the ASTRAL past operator and the TRIO dist operator, the DC “dur” operator can only be evaluated

when the interval of its parent context has been established.  In the DC-PVS encoding [SS 94], DC

operators are defined as curried PVS functions, which when given their “original” operands, return a

function from an “Interval” to the original range of the operator.  For example, the disjunction operator

“\/” is defined as “\/(A, B)(i): bool = A(i) OR B(i)”, where A and B are of the type [Interval → bool] and i

is of type Interval.  Using this technique, the resulting functions can be combined normally, while still

delaying the evaluation of the whole expression until the context is given.  This is possible because the

functions return the same type as their operands.  For example, “A \/ B” has the same type as A and B

individually, thus they can be combined arbitrarily.  Eventually, when an interval is given, an actual

boolean value is obtained.

Like TRIO, DC is an implicit time temporal logic.  In the encoding, however, an explicit interval is

eventually needed to evaluate a DC expression and return a simply typed value that can be used by the

decision procedures of PVS.  To keep the reasoning similar to that of unencoded DC proofs, a special

front-end to PVS was developed in [SS 94] to hide the details of the encoding from the user.  The front-

end essentially strips out all of the “interval indices” from a PVS formula to get the corresponding DC
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formula.  Such a mechanism does not make sense for ASTRAL since the context of each expression must

be known explicitly even before encoding, so there’s no need to hide it.

ASTRAL also differs from TRIO and DC in that it is a state-machine based language and not a temporal

logic.  Much of the effort in the DC encoding was given to supporting the special inference rules for the

modal operators of DC.  ASTRAL also requires inference rules for reasoning in its base logic, but these

are, for the most part, the inference rules of first-order logic and are not specifically tailored for the

ASTRAL language.  The proofs of ASTRAL systems rely not so much on these standard definitions, but

instead are heavily dependent on the axiomatization of the ASTRAL abstract machine.  Since PVS

already supports first-order logic within its prover, much of the effort of axiomatization could be directed

toward the definition of the abstract machine.

An encoding of ASTRAL into PVS was reported in [Bun 96] and [Bun 97], but this encoding is based on

a definition of ASTRAL that has been developed independently at Delft University based on earlier

ASTRAL work in [GK 91a] and [GK 91b].  This definition has diverged from the work reported in [CGK

97] and [CKM 94] and has essentially become a different language, although with similar syntax.  The

encoding from [Bun 96] and [Bun 97] is similar to the work presented here only in that a variable is

declared as a function from time to its ASTRAL domain.  It does not include any of the semantics

revisions, abstract machine axioms, operator definitions, arbitrary type translations, etc. that are discussed

in this paper.

Other real-time state machine languages have been encoded into theorem provers.  The Timed Automata

Model has been encoded into PVS [AH 96] and Timed Transition Systems into HOL [HCH 93].  These

languages are based on interleaved concurrency, however, which makes their semantics simpler than

those of ASTRAL.  Additionally, they are not defined in terms of arbitrary first-order logic expressions

and do not have the complex subtyping mechanisms that are available in ASTRAL.

ASTRAL Encoding

Each ASTRAL process specification is defined as a separate PVS theory.  The transitions of a process are

defined by a set of five declarations.  The “transition” type is an enumerated type that consists of all

transition names as well as an identifier “trans__i” for each ith exception of all transitions “trans”.

Throughout the discussion, examples from the translated elevator specification will be used.  A portion of

the translation is included in appendices C, D, and E.  The ASTRAL specification of the elevator can be

found in appendix B.  The transition declaration for the Elevator_Button_Panel process would be:

transition:  TYPE = {request_floor, clear_floor_request}

If request_floor had an exception condition, there would be an additional element called

“request_floor__1”.  It was sometimes necessary in the definitions of the ASTRAL transition operators

(i.e. start, end, and call) to quantify over all the elements of the transition type that are associated with a
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particular base transition, where the base transitions are all the non-exception elements of the transition

type.  Thus, the function “Base_Trans(TR1: transition)” is defined to be “trans” for TR1 = trans__i and

TR1 otherwise.  Each process has a function “Duration” that defines the duration of each transition in the

transition type.  For each base transition, the function “Exported” returns true or false if that transition is

exported or not, respectively.  Similarly, “Has_Parms” returns true or false if the given base transition has

parameters or not.

The handling of parameterized transitions was one of the more difficult issues that arose during the

encoding.  One of the main goals of the ASTRAL translation was to be able to define a special PVS

library that contained the axiomatization as well as the definitions of all of the ASTRAL operators, which

could be proven (i.e. TCCs and lemmas proven) independently and be included with any distribution.  It

was desired to provide as much of the language in the library as possible, defined and rigorously reasoned

about beforehand, so the translator would not be relied on too heavily and/or the user burdened later on.

The translator could then be focused on the specification-dependent items.  For the most part, this was

achieved in a straightforward manner, but parameterized transitions presented a number of obstacles.  The

main difficulty arose in the definition of the transition operators.  In ASTRAL, for a single transition T

with n parameters (p1, ..., pn), all of the following are legal expressions:  Start(T), Start(T(p1)), Start(T(p1,

p2)), ..., Start(T(p1, ..., pn)).  This, combined with the fact that transition parameters may be of arbitrary

number and type, seemed to indicate that Start could not be predefined, but must be constructed separately

for each use within a given specification.

A solution was found, however, that while not particularly elegant, avoids this very undesirable

complication.  For each process specification, a “parameter” type is introduced that is a record containing

the parameter names and types of all transitions in the process.  In the Elevator_Button_Panel process, the

definition of parameter is:

parameter:  TYPE = [# request_floor__f: floor #]

To avoid name conflicts between transitions, it was necessary to rename parameters.  “request_floor__f”

refers to the f parameter of the request_floor transition.  The idea of this scheme is that all entry/exit

assertions and transition operator definitions can reference the same type (i.e. parameter) and use only

those parts of a parameter instance appropriate in the given situation.  The parts of a parameter that are

not used in an expression for all intents and purposes do not exist for that expression.  For example, an

entry assertion may reference parameters that are passed to it when called from the external environment.

The entry assertion only references its own declarations within the parameter type, thus only constrains

those portions of the parameter.  The unreferenced elements of the parameter type can have any value,

thus they do not affect the reasoning.  The parameter definition allows the transition operators to be

defined uniformly as part of the ASTRAL-PVS library.  A single definition of the Start operator handles

arbitrary numbers and types of transition parameters.
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The last components of the transition declarations are the entry and exit clauses.  These are split into

Entry_Parms, Entry_No_Parms, Exit_Parms, Exit_No_Parms, depending on if the transition has

parameters or not.  The behavior of parameterized transitions differs depending on if the transition is

exported or not.  For an exported transition with parameters, the parameters are provided by the external

environment.  Thus, when such a transition is called, parameters are associated with the call and the value

of the entry assertion can be determined based on those.  A parameterized transition that is not exported,

however, is enabled if there exists a set of parameter values that makes the entry assertion evaluate to true.

Since this definition is somewhat complex, it was also incorporated into the ASTRAL-PVS library.  This

necessitated the split of the entry and exit assertions into “_Parms/_No_Parms” versions so that a

standardized definition could be provided.  The generic definitions of Entry and Exit appear in appendix

A.

Besides the transition declarations, a process theory also consists of declarations of types, constants,

variables, and definitions.  Since PVS has the ability to declare predicate subtypes as described earlier, the

translation of types was very straightforward.  For example, the definition of “floor”, which is a typedef is:

floor: TYPE = {i: pos_integer | ((const(i)) <= (const(n_floors)))(0)};

An evaluation time of “0” at the end of the expression is added because the formula translation

mechanism produces a function of type [time → T] as will be discussed.  Since type definitions cannot

depend on time-dependent entities, the 0 will drop out of all legal type expressions when evaluated.

“const” is a function that was introduced to declare functions constant over time.  This is used whenever a

constant occurs within an expression, but drops out when the expression is evaluated at a specific time.

Unlike constants, variables have different values at different times and since the history of values that a

variable v may take can be referenced explicitly using “past(v, t)”, variables are declared as uninterpreted

functions from time to their declared domain.  Thus, “v(t)” in the encoding holds the value of “past(v, t)”

in ASTRAL.  A parameterized variable is declared as a function from its parameter domain to a function

from type time to the original range.  The parameter must always be given in ASTRAL expressions (i.e.

functions are not allowed as values), so it was not necessary to have time as the first operand.  For

example, floor_requested is defined as:

floor_requested:  [[floor] → [time → boolean]]

For the most part, these translations were straightforward.  One difference between ASTRAL and PVS,

however, is that in ASTRAL, there is no ordering implied in the declarations of the specification.  That is,

it is not necessary (in fact, not possible by the structure of ASTRAL specifications) to declare constants,

variables, etc. before they are used.  Thus, declarations in the type section may refer to declarations in the

constant and definition sections and possibly vice-versa, without producing a typecheck error.  In PVS,

however, an item can only be referenced after it has been declared.  Thus, in order to translate the

declarations in an ASTRAL specification correctly into a corresponding PVS specification, the ordering of
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declarations needed to be explicitly determined.  To handle this, the translator first constructs the

dependencies of all type declarations.  As the dependency lists are created, any constants, definitions, and

process instances encountered are added to that type’s dependency list and their dependencies constructed.

If a time-dependent expression, such as a variable or a past expression, is encountered during the

construction of the dependencies, an error is reported, since a type cannot be time-dependent.  Eventually,

when all dependencies lists have been created, the necessary ordering can be determined by declaring the

items without dependencies, removing those dependencies from the remaining items, and repeating until

all items have been declared.  Any circular dependencies encountered result in an error.

All well-formed formula clauses of ASTRAL, such as invariants, entry assertions, definitions, etc. are

translated identically.  All of the operators of the ASTRAL language have been encoded as interpreted

functions, so given their operands, they evaluate to specific values.  The parse tree of the ASTRAL

formula is traversed and the appropriate PVS definition is substituted for each ASTRAL operator.

Additionally, all ASTRAL operator function definitions are curried functions from their normal operand

domains to the type [time → range].  For example, “Start1(tr1, at1)” takes a transition tr1 and an operand

at1 of type [time → time] and returns a function of type [time → bool] such that when the evaluation time

t1 is given will return true if and only if the last start of tr1 at time t1 was at time at1(t1).  In the Start1

definition, as well as the definitions of all ASTRAL operators that take a time operand, the time operand

is itself of type [time → time] and is only evaluated after an evaluation context is provided.  Since it is not

known whether at1(t1) will be a valid operand or not (i.e. will cause the expression to be undefined), t1 is

limited by the PVS typing system to be greater than or equal to at1(t1).  It is then the user’s job to show

via a TCC obligation that any evaluation times of a Start1 expression occurring in a specification are

permissible.  The Start1 operator is defined:

Start1(btr1: base_transition, at1: [time → time])(t1: {t1: time | at1(t1) <= t1}): bool =
(EXISTS (tr1):

Base_Trans(tr1) = btr1 AND
Fired(tr1, at1(t1))) AND

(FORALL (t2):
at1(t1) < t2 AND t2 <= t1 IMPLIES

(FORALL (tr1):
Base_Trans(tr1) = btr1 IMPLIES

NOT Fired(tr1, t2)))

The operator is called Start1 instead of Start to be consistent with the definition of End, which could not

be defined as “End” since it is a keyword of PVS.  The “1” indicates that the operator refers to the last

start.  Later, the Startn definition will be shown which refers to the nth start in the past.  The definition of

Start1 is complicated by the need to handle the definition of transition exceptions.  In ASTRAL, it is not

possible to assert anything about the start of an exception.  That is, assertions can only be made about the

start time of the base transition, so stating Start(trans, t1) actually means that trans fired because of its

entry assertion or any one of its exceptions.  It is convenient to think of exceptions as separate transitions
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in the encoding, however, because just like a transition with a single entry assertion, they each have a

precondition, a postcondition, and a duration, and must be mutually exclusive within the same process

instance.  The definition of Start1 takes this into account.  It says that for at1(t1) to be the last time btr1

started, its entry or one of its exceptions must have fired and no entry or exception has fired from that time

up until the evaluation time t1.  Start1 is only well-defined in a context in which the time of the last start

at1(t1) is greater than or equal to 0 and less than or equal to the evaluation time t1.

A less intuitive definition is that of the Startn operator (i.e. the nth start in the past).

Startn_0(ai1: [time → posint], btr1: base_transition, at1: [time → time])(t1: time):
RECURSIVE bool =

(IF at1(t1) > t1 THEN FALSE
ELSIF ai1(t1) = 1 THEN Start1(btr1, at1)(t1)
ELSE (EXISTS (t2):

t2 <= t1 AND
Start1(btr1, const(t2))(t1)) AND

(EXISTS (t2):
t2 < Start1(btr1)(t1) AND
Start1(btr1, const(t2))(t2)) AND

Startn_0(const(ai1(t1) - 1), btr1, const(at1(t1)))
(epsilon! (t2):

t2 < Start1(btr1)(t1) AND
Start1(btr1, const(t2))(t2) AND
(FORALL (t3):

t2 < t3 AND t3 < Start1(btr1)(t1) IMPLIES
NOT Start1(btr1, const(t3))(t3)))

ENDIF)
MEASURE (LAMBDA (ai1, btr1, at1): (LAMBDA (t1): ai1(t1)))

Startn(ai1, btr1, at1)(t1: {t1 | at1(t1) <= t1}): bool =
Startn_0(ai1, btr1, at1)(t1)

The definition of Startn is split into two functions, Startn and its internally invoked counterpart, Startn_0.

This separation is so that a TCC is only generated for the Startn reference occurring in the original

ASTRAL specification and not for the subsequent recursive references in the internal definition.  That is,

the user only has to prove that the time argument in the original specification is between 0 and the

evaluation time so that the result is well-defined.  In the subsequent recursive calls, however, it may be

that the evaluation time given by the epsilon expression may actually be before the time the user gave

(at1) and yet still be a well defined result.  In that case, it would mean that the nth start in the past did not

occur at the given time since that time was “passed up” by the recursive calls before the nth start occurred

and hence the expression is false and not undefined.  For a similar reason, the existence clauses have been

added to the main body of Startn_0 rather than restricting the domain of the evaluation time t1.  If there

have not yet been the number of starts specified in the integer argument, then the expression is false and

not undefined.  The existence clauses also serve to trivially satisfy the TCCs generated for the

Start1(btr1)(t1) used in the definition.
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This definition also illustrates the use of the PVS epsilon function, which is used in many of the transition

operator and Change operator definitions.  epsilon is a “choice function”, which given a predicate p of

type [T → bool], where T is an arbitrary type, returns a element e of type T such that p(e) holds.  In the

Startn definition, it is used to select the second time in the past that the given transition has started.  In

other words, Startn(n, trans, time) is true if there has been a start and additionally Startn(n-1, trans, t1)

holds, where t1 is the second time in the past that trans has started.  Note that t1 must be a time before the

last start or else the same time would be returned every iteration.  The measure at the end of the Startn_0

definition must be given in every PVS recursive function definition.  It has the same signature as the

associated function and defines an expression that decreases in each recursive iteration.  It is used to prove

the termination of the function.  The definitions of Endn, Calln, and Changen are defined similarly to

Startn.

With the operators defined in this manner, it is then possible to combine ASTRAL operators in standard

ways to achieve an expression that will only be evaluated once its temporal context is given and must be

proven to be well-defined.  Defining the operators this way also has the advantage that all expressions

translated from ASTRAL to PVS can be easily expanded and reduced via the built-in mechanisms of PVS

such as beta reduction.  Additionally, such an encoding forces every operator to be examined very closely

for its exact meaning.  This encoding, however, does have some drawbacks.  One is that by using curried

functions and variables from time to their domains, the reasoning is no longer in ASTRAL.  Instead of

reasoning about past expressions as is done in the original semantics of [CSK 94] and [CKM 94], the user

must now work directly with the underlying PVS logic.  A more pressing concern is that it becomes more

difficult to translate the results gleaned from PVS back into the ASTRAL context.  This difficulty arises

because many of the conjuncts of the operator definitions will be split apart and “flattened” during the

proof process.  Thus, although all the components of an operator definition may be present, it is non-

trivial to reform them correctly into an expression equivalent to that of the operator.  This becomes an

issue when an error is found during the proofs and the original ASTRAL specification needs to be

changed.  The counterexample found may no longer be recognizable back in the ASTRAL context.  This

is a valid concern, but upon closer examination, the transition between the PVS translation and the

original ASTRAL specification is not as great as it may seem.  The logic of PVS is very similar to that of

ASTRAL.  Additionally, any result found will be in terms of variables and Fired expressions.  As

discussed previously, v(t) in the encoding is equivalent to past(v, t) in ASTRAL.  There is also a very fine

line between Fired(tr1, t1) in the encoding and Start(tr1, t1) in ASTRAL, thus the difference in reasoning

between proving or disproving that tr1 Fired at t1 or Started at t1 is very small.  It may still be difficult to

see where the counterexample fits in the main proof and how the original specification needs to be

changed, but this can hopefully be gleaned from an examination of the complete PVS proof tree.
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Another concern is that restricting time operand domains rather than directly encoding an undefined

value and the associated axioms uses the strict semantics of quantification over time rather than the loose

semantics, as defined in [CSK 94].  These semantics define the values of quantified expressions in the

presence of undefined values.  In the strict semantics, “FORALL t: time (A)” is true if A evaluates to true

for all values of t, false if A evaluates to false for at least one value of t and A is not undefined for any

value of t, and undefined otherwise.  In the loose semantics, “FORALL t: time (A)” is false if A does not

evaluate to true for any value of t and A evaluates to true for at least one value of t, false if A evaluates to

false for at least one value of t, and undefined otherwise.  For example, “FORALL t: time (End(tr, t +

duration(tr)) → Start(tr, t))” is a true statement in the loose semantics, but in the translation, a context

must be provided to evaluate the expression and since the domain of time ranges over values past any

context that can be given, the formula must be written instead as “FORALL t: time (t <= now → (End(tr, t

+ duration(tr)) → Start(tr, t)))”.

The major obstacle in translating arbitrary well-formed formulas was translating identifiers with types

involving lists and structures.  In ASTRAL, it is possible to define arbitrary combinations of structures

and lists as types, thus references to variables of these types can become quite complex.  For example,

consider the following type declaration:

list1:  list of integer,
struct1:  structure of (l_one: list1),
list2:  list of struct1,
struct2:  structure of (l_two(integer): list2)

If s2 is a variable of type struct2, valid uses of s2 would include s2 by itself, s2[l_two(5)], s2[l_two(5)][9],

s2[l_two(5)][9][l_one], and s2[l_two(5)[9][l_one][2].  The translation of expressions such as these must

result in a curried time function, so that it can be used with the definitions of the curried boolean and

arithmetic operators.  The expression in each bracket can be time-dependent, so it is necessary to define

the translation such that an evaluation context (i.e. time) given to the expression as a whole is propagated

to all expressions in brackets.

In the translation, s2 is a function of type [time → struct2] and struct2 is a record [# l2: [integer → list2]

#].  The translation of “s2[l_two(5)][9]”, for example, is:

(λ(T1: time): nth(((λ(T1: time): l_two((s2)(T1))((const(5))(T1))))(T1), (const(9))(T1)))

The lambdas are added to propagate the temporal context in which the formula is to be evaluated.

Although the lambda expression generated for s2 looks very difficult to decipher, translated expressions

will never actually be used in “raw” form.  In the proof obligations and elsewhere, a translated expression

is never used “as is”, but is first evaluated in some context.  Once this evaluation occurs, all the lambdas

drop out and the formula is simplified to a combination of variables and predicates.  For example, the

expression above evaluated at time t becomes:

nth(l_two((s2)(t))(5), 9)
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First, the value of the variable s2 is evaluated at time t.  Then the record member l_two is obtained from

the resulting record.  This member is parameterized, so is given a parameter of 5.  Finally, element 9 of

the resulting list is obtained.

Well-formed formulas in transition exit clauses require special handling.  In ASTRAL, variables that are

not referenced or only referenced in “primed form” in exit assertions are assumed to have not changed.  If

the exit clauses are asserted to hold as they are written, then nothing can be deduced about variables not

referenced (i.e. it cannot be shown whether the variables change or do not change value).  Thus, “implied

nochange” expressions are automatically “added” to the exit clause in the PVS translation.  Essentially,

for each variable v not mentioned in an exit clause of a transition tr1, the expression “v = v′” must be

conjoined to the exit assertion.  For example, the exit assertion of door_stop is generated as:

((NOT (door_moving)) AND
((door_open) = (NOT ((λ(T1: time): door_open(T1 - Duration(door_stop))))))) AND
(λ(T1: time): position(T1) = position(T1 - Duration(door_stop))) AND
(λ(T1: time): going_up(T1) = going_up(T1 - Duration(door_stop))) AND
(λ(T1: time): moving(T1) = moving(T1 - Duration(door_stop)))

even though the actual exit assertion is:

~door_moving &
door_open = ~door_open′

Additionally, there are special nochange semantics associated with the IF-THEN-ELSE and ALT

operators of ASTRAL.  For a full treatment of implied nochanges, see [AK 86].

Currently, the ASTRAL-PVS translator can completely translate any single-level ASTRAL specification.

One issue that has not been resolved satisfactorily, however, is the translation of set cardinality

expressions.  The SET_SIZE operator in ASTRAL returns the cardinality of sets of any type.  PVS also

provides this functionality in its cardinality library.  To use the cardinality operator, however, the

cardinality theory must be instantiated with a suitable mapping from the type of the set to the natural

numbers.  Given the ability in ASTRAL to define arbitrary predicate subtypes, automatically generating

such a mapping from an ASTRAL specification is a non-trivial matter.  At present, a blank IMPORTING

template is added in the generated PVS specifications that must be filled in by the user if the SET_SIZE

operator is used in the ASTRAL specification.

In addition to a theory for each ASTRAL process type specification, there is an additional PVS theory

generated for the global specification.  The declarations of the global theory are constructed similarly to

those of the process theories.  The global theory also defines the process instances in the system as well as

all exported variables and transitions that are used in the system.  Each process definition may contain

references to imported variables.  The imported variables must be declared before they are referenced, so

it’s not possible to import a variable from an instantiated process theory because that process may in turn

import a variable or transition from the importing process, resulting in a circular dependency between
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processes.  Thus, rather than declaring them separately in each process that imports them, all exported

variables are declared once at the global level for each process instance.  In the process type theories, a

tradeoff between readability and usability had to be considered.  The formulas are much more readable

and intuitive using the variable names declared in the process type specification.  It is more difficult to use

the local proofs as lemmas in the global proofs, however, because the global theory can only reference the

global exported variables declared globally.  The choices to solve this problem were to exclusively use

“i_variable(self)” instead of “variable” in the local formulas and not declare the variable locally in the

theory, or to declare and use “variable” at the local level and axiomatize the relationship between

“variable” and “i_variable(self)”.  In the encoding, the second method was chosen.

ASTRAL Axioms

The execution history of a process is represented by the predicates Fired and Called, which each take a

transition and a time and return whether or not the transition has fired or been called at that time,

respectively.  Additionally, the functions Fire_Parms and Call_Parms are defined to record the history of

transition parameters.  These functions are defined:

Fired:  [[transition, time] → bool]
Called:  [[{btr1: base_transition | Exported(btr1)}, time] → bool]

Fire_Parms:  [[btr1: {btr1: base_transition | Has_Parms(btr1) AND NOT Exported(btr1)},
                    {t1: time | (EXISTS (tr1: transition): Base_Trans(tr1) = btr1 AND
                        Fired(tr1, t1))}] → parameter]
Call_Parms:  [[etr1: {etr1: exported_transition | Has_Parms(etr1)},
                    {t1 | Called(etr1, t1)}] → parameter]

Call_Parms is only valid at times when an exported transition has been called and holds the parameters

supplied by the external environment.  Fire_Parms is only valid at times when an internal parameterized

transition has fired and holds the instance of the parameters for which the transition fired.

There are seven core axioms based on these four functions that describe the ASTRAL abstract machine.

trans_fire is the only way to derive that a transition fired.  It states that if some transition is enabled and

the process is idle (i.e. no other transition is in the middle of execution), then some transition will fire.

Note that Enabled requires that the transition’s entry assertion holds and that if the transition is exported,

then it has been called.  The exact definition of Enabled is in appendix A.

trans_fire: AXIOM
(FORALL (t1):

(EXISTS (tr1):
Enabled(tr1, t1)) AND

(FORALL (tr2, t2):
t1 - Duration(tr2) < t2 AND t2 < t1 IMPLIES

NOT Fired(tr2, t2)) IMPLIES
(EXISTS (tr1): Fired(tr1, t1)))



17

trans_fire by itself is not sufficient to describe what occurs when a transition fires.  A number of other

axioms make assertions that further describe the behavior of a process.  trans_entry states that whenever a

transition fires, its entry assertion held at that time.

trans_entry: AXIOM
(FORALL (tr1, t1):

Fired(tr1, t1) IMPLIES
Entry(tr1, t1))

trans_exit states that whenever a transition fires, its exit assertion holds at a time duration later.  Note that

in this case, the user must guarantee that the exit assertion will not evaluate to false for the axiom to be

sound.  In the case of trans_entry, this requirement is not necessary because it is not possible to derive

Fired(tr1, t1) if Entry(tr1, t1) does not hold.  In the trans_exit case, however, it is possible to derive

Fired(tr1, t1), regardless of the value of Exit(tr1, t1 + Duration(tr1)).

trans_exit: AXIOM
(FORALL (tr1, t1):

t1 >= Duration(tr1) AND
Fired(tr1, t1 - Duration(tr1)) IMPLIES

Exit(tr1, t1))

trans_called states that whenever an exported transition fires, it must have been called since the last time

the transition fired.  Note that it was not possible to deduce this in the axioms of [CKM 94] and [CSK 94].

trans_called: AXIOM
(FORALL (tr1, t1):

Fired(tr1, t1) AND
Exported(Base_Trans(tr1)) IMPLIES

Issued_Call(Base_Trans(tr1), t1))

trans_mutex states that whenever a transition fires, no other transition can fire until duration later (i.e.

until the transition ends).  This axiom combined with trans_fire is sufficient to show that a single unique

transition fires when some transition is enabled and the process is idle.

trans_mutex: AXIOM
(FORALL (tr1, t1):

Fired(tr1, t1) IMPLIES
(FORALL (tr2):

tr2 /= tr1 IMPLIES
NOT Fired(tr2, t1)) AND

(FORALL (tr2, t2):
t1 < t2 AND t2 < t1 + Duration(tr1) IMPLIES

NOT Fired(tr2, t2)))

These five axioms describe the dynamic execution of transitions.  Besides the start, end, and call times of

transitions, the other time-dependent entities are variables.  The axioms so far only describe variables

implicitly in the Entry, Exit, and Enabled functions used in them.  Thus, the value of a variable is only

known at the time a transition starts and when it ends.  In ASTRAL, however, it is also known that a

variable only changes value when a transition ends.  Thus, the var_changes axiom states this fact.

Specifically, it states that for any interval in which a transition has not ended, all variables keep a single
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value throughout the interval.  The Vars_No_Change function is process-dependent and is constructed by

the translator based on the variables declared in each process.  It states that the value of all variables of the

process have the same value at t1 and t3.  This axiom was missing from [CKM 94].

var_changes: AXIOM
(FORALL (t1, t3):

t1 <= t3 AND
(FORALL (tr2, t2):

t1 < t2 + Duration(tr2) AND
t2 + Duration(tr2) <= t3 IMPLIES

NOT Fired(tr2, t2)) IMPLIES
Vars_No_Change(t1, t3))

Finally, the initial_state axiom states that the initial state holds at time 0.  In [CKM 94], this did not

appear as an axiom, but instead appeared in the base case proofs.  That is, the initial condition appears in

the proof obligations as “initial & now = 0 → invariant (or schedule)”.  When the initial condition

appears like this, however, nothing can be inferred about the initial state of the system.  Thus, if the

system depends on the initial configuration, nothing can be proved about its operation.  As was the case in

trans_exit with Exit, Initial is required to be true at time 0, or else the soundness of the axiom cannot be

guaranteed.

initial_state: AXIOM
Initial(0)

In addition to the core axioms, there are three axioms dealing with imported transitions.  For the most

part, nothing can be inferred about imported variables and transitions.  It is not known when imported

variables will change, nor what the duration of an imported transition is, nor what held when an imported

transition started or ended, and so on.  If any of these items are required to hold to prove a schedule, they

must be explicitly stated in an imported variable clause.  There are, however, a few things that can be

deduced about all imported transitions, regardless of context.  None of these axioms were dealt with in

[CKM 94] or [CSK 94].  The imported axioms are expressed in terms of Started, Ended, and Called.  The

exact duration between a start and an end of an imported transition is not known globally or in other

processes because the duration is implementation dependent.  The duration may have different values

depending on the number and durations of exceptions to each transition.  Thus, Started and Ended had to

be defined separately, rather than the single Fired of local process definitions.  i_trans_mutex states that

for any process id and in any interval such that an imported transition started at the beginning of the

interval and has not yet ended, no imported transition can have started or ended on the process associated

with that process id within the interval (excluding the first instant).

i_trans_mutex: AXIOM
(FORALL (id1, itr1, t1, t3):

t1 < t3 AND
Started(id1, itr1, t1) AND
(FORALL (t2):

t1 < t2 AND t2 <= t3 IMPLIES
NOT Ended(id1, itr1, t2)) IMPLIES
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(FORALL (itr2, t2):
t1 < t2 AND t2 <= t3 IMPLIES

NOT Started(id1, itr2, t2) AND
NOT Ended(id1, itr2, t2)))

i_trans_end states that for any process id, if an imported transition has ended on that process, no other

imported transition ended on the same process at the same time and there was a start that has occurred

since the last time the transition ended.

i_trans_end: AXIOM
(FORALL (id1, itr1, t3):

Ended(id1, itr1, t3) IMPLIES
(FORALL (itr2):

itr2 /= itr1 IMPLIES
NOT Ended(id1, itr2, t3)) AND

(EXISTS (t1):
t1 < t3 AND
Started(id1, itr1, t1) AND
(FORALL (t2):

t1 < t2 AND t2 < t3 IMPLIES
NOT Ended(id1, itr1, t2))))

i_trans_start is similar to i_trans_end, except that it states that if an imported transition starts, then no

other imported transition started at the same time and that the transition was called since the last time it

started.

i_trans_start: AXIOM
(FORALL (id1, itr1, t3):

Started(id1, itr1, t3) IMPLIES
(FORALL (itr2):

itr2 /= itr1 IMPLIES
NOT Started(id1, itr2, t3)) AND

(EXISTS (t1):
t1 <= t3 AND
Called(id1, itr1, t1) AND
(FORALL (t2):

t1 <= t2 AND t2 < t3 IMPLIES
NOT Started(id1, itr1, t2))))

There are some axioms that are specification-dependent and must be constructed during translation.  In

the local and global cases, the axiom section from the specification is translated as an axiom.  The axiom

section is a time-independent clause, but rather than implementing a separate translation procedure for it,

the standard formula translation is used and then the formula is evaluated at time 0.  If the axiom clause is

written correctly and is time-independent, the 0 will drop out and only assertions about constants will

remain.  There are two additional axioms constructed in the global specification.  The type “id” is

declared as a NONEMPTY_TYPE, thus nothing is known about it by PVS, except that id has at least one

item in its domain.  The axiom id_domain further refines this domain by stating that every id must

correspond to some process instance declared in the processes section.  The second axiom id_unique states

that every process instance corresponds to a unique id.  Thus, the type id is declared to be exactly the set

of process instances.  There is also an additional axiom in each process definition.  The axiom
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self_imports states the relationship between exported, but locally named variables and their global

counterparts of the form i_var(id).  In addition to stating that var = i_var(self), self_imports also relates

the local values of Fired, Called, and Call_Parms to the global definitions of Started, Ended, Called, and

i_Call_Parms for exported transitions.  The definitions of these axioms for the elevator system can be

found in appendices C and D.

Proof Obligations

The local invariant and schedule proof obligations are a straightforward translation of those presented in

[CKM 94].  The obligations for the elevator process are located in appendix E.  The global obligations

look very similar to the local obligations but translating them correctly, however, is not as easy.  In the

global obligations, it is not possible to reason about properties in quite the same way as in the local case,

because the global proofs cannot use any information that is not exported by each process.  That is, at the

global level, nothing is known about implementational details such as transition entry and exit assertions

or the values of local variables.  Thus, it’s not possible to use the style of reasoning employed in local

proofs, such as when a transition must fire, what held before and after it fired, and so on.  Instead, the

global proofs must be performed by using the local invariants and schedules as lemmas to prove properties

of the system as a whole.  Local proof obligations contain references to local variables that are not visible

at the global level.  It is necessary, however, to be able to use the proofs performed at the local level as

lemmas in the proof of the global properties.  It is a non-trivial problem to determine which portions of

the local formulas can be removed “safely” (i.e. still preserve the property).  Currently, a separate lemma

with the desired properties must be introduced by the user with a proof that should follow immediately

from the local proof obligations and the self_imports axiom.

Example Proof Session

Initially, this section was going to contain a small proof session based on the elevator specification in

order to demonstrate how many of the axioms are used.  Unfortunately, the attempt of a few small

examples quickly turned into hundreds of pages of PVS output.  Since it is not practical to include the

bulk of the proofs, only a few of the major subgoals will be given along with some explanation of which

axioms were used to finish the proofs.  The example that was proved was the following local invariant of

the elevator process:

End(arrive, now) & the_elevator_buttons.floor_requested(position) →
Start(open_door, now)

This states that if the elevator arrives at a floor and there is a request from inside the elevator to stop at

that floor, then the elevator will stop and open the doors.  This example illustrates the basic approach to

proving that a transition fires at a given time.  After expanding the ASTRAL definitions and doing some

skolemization and simplification, the sequent to be proved is:

[-1]    (t2!1 >= arrive_dur)
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[-2]    Fired(arrive, (t2!1 - arrive_dur))
[-3]    (FORALL (t2):
         t2!1 < t2 AND t2 <= t2!1
             IMPLIES
           (FORALL (tr1):
              tr1 = arrive AND t2 >= Duration(tr1)
                  IMPLIES NOT Fired(tr1, t2 - Duration(tr1))))
[-4]    i_floor_requested(the_elevator_buttons)((position)(t2!1))(t2!1)
  |-------
{1}    Fired(open_door, t2!1)

In this sequent, since none of the antecedents are contradictory, it needs to be shown that the single

consequent holds.  That is, that open_door fires at time t2!1.  As mentioned, the only way to prove that a

transition fires is to use the axiom trans_fire.  After introducing this axiom as a lemma and instantiating it

with open_door and t2!1, three main subgoals result.  In the first subgoal:

{-1}    (EXISTS (tr1): Fired(tr1, t2!1))
[-2]    (t2!1 >= arrive_dur)
[-3]    Fired(arrive, (t2!1 - arrive_dur))
[-4]    (FORALL (t2):
         t2!1 < t2 AND t2 <= t2!1
             IMPLIES
           (FORALL (tr1):
              tr1 = arrive AND t2 >= Duration(tr1)
                  IMPLIES NOT Fired(tr1, t2 - Duration(tr1))))
[-5]    i_floor_requested(the_elevator_buttons)((position)(t2!1))(t2!1)
  |-------
[1]    Fired(open_door, t2!1)

the antecedent “(EXISTS (tr1): Fired(tr1, t2!1))” has been added.  Thus, it is known that some transition

fired at t2!1, but has not yet been shown that the transition was open_door.  To complete the proof of this

subgoal, it must be shown that open_door is the only transition that is enabled at t2!1.  The new

antecedent is existentially quantified, so can be skolemized to remove the quantifier.  Thus, antecedent [-

1] becomes “Fired(tr1!1, t2!1)”.  From here, the proof is broken up into a separate case for each possible

value of tr1!1 (i.e. each transition of the elevator).  The case for open_door is trivially performed since

“Fired(open_door, t2!1)” will be both an antecedent and a consequent.  open_door is shown to be enabled

at t2!1 in the second main subgoal.  For the remaining transitions, trans_entry is used to introduce the

entry assertion of each transition as an antecedent and then a contradiction obtained.  In some cases, these

proofs become rather involved because in order to show that the entry assertion is false, the predecessors

of the transition must be determined.  For example, it is not possible to achieve a contradiction for

close_door until it is shown that move_up or move_down must have fired before arrive so that the door is

already closed and cannot be closed again.  In these cases, the implied nochange expressions come into

play and the var_changes axiom must be used to show that certain variables keep the same value from

when the predecessor’s entry assertion held.

In the second subgoal:

[-1]    (t2!1 >= arrive_dur)
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[-2]    Fired(arrive, (t2!1 - arrive_dur))
[-3]    (FORALL (t2):
         t2!1 < t2 AND t2 <= t2!1
             IMPLIES
           (FORALL (tr1):
              tr1 = arrive AND t2 >= Duration(tr1)
                  IMPLIES NOT Fired(tr1, t2 - Duration(tr1))))
[-4]    i_floor_requested(the_elevator_buttons)((position)(t2!1))(t2!1)
  |-------
{1}    (EXISTS (tr1): Enabled(tr1, t2!1))
[2]    Fired(open_door, t2!1)

the consequent “(EXISTS (tr1): Enabled(tr1, t2!1))” has been added.  Thus, it must be shown that some

transition was enabled at t2!1.  This proof is carried out similarly to that of the first subgoal except that

only a single case needs to be proven.  Since the existential quantifier appears as a consequent, the user

may instantiate it with a transition of choice.  Once the quantifier has been instantiated, Enabled is

expanded and it is attempted to match actual process conditions in the antecedents with the enabling

conditions in the consequents.  Note that it is only necessary to show that some transition is enabled at

t2!1 and not specifically open_door.  In this particular proof, however, if any transition besides open_door

is enabled, then it will not be possible to achieve a contradiction for that transition in the proof of the first

subgoal.  trans_exit may be used to introduce conditions that hold in the process at t2!1.  In this proof,

trans_exit was instantiated with the arrive transition to show that position changes and that moving stays

the same, since it must be shown that the last change of position must be greater than the last change of

moving in the entry assertion of open_door.  Like the first subgoal, this subgoal may become lengthy

because some conditions necessary for the chosen transition to fire may not be explicitly stated in the

sequent, so must be derived by determining its possible predecessors.  In this proof, open_door requires

~door_moving and ~door_open to hold, which are not asserted in the entry or exit of arrive, so thus it

must be shown that the only possible predecessors to arrive are move_up and move_down, which both

assert those conditions in their entry assertions.

In the third subgoal:

[-1]    (t2!1 >= arrive_dur)
[-2]    Fired(arrive, (t2!1 - arrive_dur))
[-3]    (FORALL (t2):
         t2!1 < t2 AND t2 <= t2!1
             IMPLIES
           (FORALL (tr1):
              tr1 = arrive AND t2 >= Duration(tr1)
                  IMPLIES NOT Fired(tr1, t2 - Duration(tr1))))
[-4]    i_floor_requested(the_elevator_buttons)((position)(t2!1))(t2!1)
  |-------
{1}    (FORALL (tr2, t2):
         t2!1 - Duration(tr2) < t2 AND t2 < t2!1 IMPLIES NOT Fired(tr2, t2))
[2]    Fired(open_door, t2!1)
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a consequent has been added that requires the process to be idle at t2!1.  In particular, it must be shown

that no transition is in the middle of firing at t2!1.  This subgoal is proved mainly by using the

trans_mutex axiom.  The universal quantifier is first skolemized to remove the quantifier and consequent

[1] becomes an expression in terms of skolem variables tr2!1 and t2!2.  The proof is then broken into two

cases:  t2!2 >= t2!1 - arrive_dur and t2!2 < t2!1 - arrive_dur, which correspond to tr2!1 firing before

arrive fires and after, respectively.  In the former case, trans_mutex is instantiated with arrive to show that

tr2!1 cannot fire after arrive fires and before t2!1.  In the latter case, trans_mutex is instantiated with tr2!1

to show that arrive couldn’t have fired at t2!1 - arrive if tr2!1 fired at a time before t2!1 - arrive_dur.  In

both cases, a contradiction is achieved and the subgoal is proved.

Other Applications

Now that ASTRAL has been encoded into a theorem prover and a translator has been developed, the

encoding can be used as a basis for other useful analysis tools.  One such tool is a transition sequence

generator.  That is, a tool that can construct sequences of transitions that are possible in a process and that

satisfy given properties (e.g. a certain length, between two specific transitions, etc.).  This can be used to

estimate time delays between states, help the user visualize the operation of the system, and in some cases

can be used to prove simple system properties.

A first step towards such a tool is determining the possible successors of each transition.  Once this

information has been obtained, the sequences with the desired properties can be constructed.  Determining

whether one transition is the successor of another, however, is undecidable since transition entry/exit

assertions may be arbitrary first-order logic expressions.  Many successors, however, can be eliminated

based only on the simpler portions of the entry/exit assertions, such as boolean and enumerated variables.

The translator produces a file of proof obligations to automatically eliminate as many transition successors

as possible.  For each pair of transitions (tr1, tr2), an obligation tr1_not_tr2 is added as shown below.

tr1_not_tr2: THEOREM
NOT (FORALL (t1): (FORALL (t2):

t1 + Duration(tr1) <= t2 AND
Fired(tr1, t1) AND Fired(tr2, t2) AND
(FORALL (tr3, t3):

t1 + Duration(tr1) < t3 + Duration(tr3) AND
t3 + Duration(tr3) <= t2 IMPLIES

NOT Fired(tr3, t3))))

Note that the theorem is written in a somewhat peculiar negated form to keep the third quantifier in the

antecedent portion of the theorem’s sequent representation, which simplifies the definition of the strategy

to discharge these obligations discussed below.  Also note that this theorem only states that some

transition must end between tr1 and tr2 and does not exclude tr1 or tr2 from firing.  The above obligation

is sufficient, however, to prove that a transition besides tr1 and tr2 must fire in between any firing of tr1

and tr2.  If only tr1 and tr2 fire in between t1 and t2, then since t2 - t1 is finite and the durations of tr1
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and tr2 are constant and non-null, eventually a contradiction can be achieved by applying the above

theorem repeatedly on an ever shortening interval.  Such a proof is non-trivial to perform in PVS, thus a

lemma is available in the ASTRAL-PVS library stating that if tr1_not_tr2 holds, then a transition other

than tr1 and tr2 must fire between any times that tr1 and tr2 fire.

A PVS strategy has been defined to automatically discharge these obligations.  This strategy uses abstract

machine axioms to introduce the entry and exit assertions of tr1, the entry assertion of tr2, and the fact

that if nothing ended between the end of tr1 and the start of tr2, then all variable values remained constant

during this time.  Once all of this information is present, the strategy invokes a modified version of the

PVS “grind” strategy that expands all ASTRAL definitions except those of quantifiers, the change

operator, and the transition operators.

In addition to the theory with the successor proof obligations in it, the translator also constructs a PVS

proof script file consisting of a proof attempt for each obligation that uses the predefined strategy.  Thus,

the proofs of all the obligations can be attempted without human interaction by a single PVS command

(M-x prove-theory) and the results of all the proofs are displayed when PVS has finished.  The file of

results can then be read by another tool to construct transition sequences based on the displayed results.

Using PVS as the basis for a sequence generation tool has a number of benefits.  Not only are the results

obtained at minimal cost, but they are also of use as lemmas during the full system proofs.  Even though

the results may not be complete since some successors may not be eliminated without human interaction,

the results are known to be sound because they are carried out within the framework of the encoding.

The table below shows the results of running the proof script generated for the elevator system.  For each

process type, the table shows the maximum number of successors, the number of successors that are

actually possible, and the number that were computed automatically with the proof script generated for

that process.  The difference in the elevator process results from two factors.  First, many of the transition

entry assertions contain timed operators to define the delay between certain operations.  Since the strategy

does not expand these operators to control complexity, this information cannot be used to eliminate

successors.  Additionally, many entry assertions do not constrain all of the state variables, thus it is

sometimes necessary to look at sequences of length three or more to be able to eliminate certain

possibilities.

process type max # of succ actual # of succ computed # of succ

Elevator 36 11 22

Elevator_Buttons 4 4 4

Floor_Buttons 16 12 12
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Conclusions and Future Work

An ASTRAL to PVS translator has been developed that can completely translate any single-level

ASTRAL specification.  The translator includes a library of ASTRAL definitions and axioms that has

been completely proved and rigorously reasoned about.  The library also contains strategies to assist in

rewriting ASTRAL definitions during proof attempts.  A few small examples have been completed using

the encoding.

A number of issues still need to be addressed in future work.  To strengthen the semantic foundation of

the ASTRAL axioms, the proofs of soundness and correctness should be performed.  For the translator

and encoding, the implementation clause of ASTRAL, which is used to map relationships between upper

and lower level specifications, needs to be incorporated into the translator, as well as the interlevel proof

obligations necessary to show that an implementation is consistent with that of the level above.  Currently,

the refinement mechanism described in [CKM 95] is in a transitional phase, so its translation was

postponed until the new refinement mechanism is in place.  Additionally in the translator, the cardinality

translation needs to be studied further based on more experience in doing proofs to see if any general

guidelines can be given as to instantiating the cardinality theory.  A better solution to using the results

from local proofs in the proofs of global properties is also desirable.

In general, more proofs need to be performed for different ASTRAL systems using their PVS translations.

In studying the proofs performed of many systems, it can be determined if reoccurring patterns exist in the

proofs.  These patterns can then be incorporated into suitable PVS strategies.  One such strategy will be to

attempt TCCs encountered during proofs.  From the proofs completed so far, it was noticed that many of

the TCCs generated that were not automatically completed by the prover, could have been completed if a

suitable rewriting scheme was available to the basic PVS TCC strategy.  Thus, a new TCC strategy

incorporating the expand-astral strategy will be developed.  The patterns may also lead to the definition of

useful lemmas that can be proven in advance and added to the ASTRAL-PVS library for future use.  It is

also useful to investigate whether the structure of the ASTRAL specification determines which lemmas

and strategies are most useful.

One item that will be integrated shortly into the SDE is the ability to perform “on-the-fly” translations.

That is, the user can write a formula in ASTRAL and the SDE will give the PVS translation of the

formula, which can be cut-and-pasted into the PVS prover window, back to the user.  This will be helpful

in introducing lemmas to the prover.  With this facility available, the user can formulate helpful lemmas

in the ASTRAL language, while still being able to take advantage of the PVS prover.
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Appendix A:  PVS Definitions of Entry, Exit, and Enabled

astral_trans_ext[transition: NONEMPTY_TYPE, parameter: NONEMPTY_TYPE,
             Duration: [transition -> posreal],
             Base_Trans: [transition -> transition],
             Has_Parms: [{tr1: transition | Base_Trans(tr1) = tr1} -> bool],
             Exported: [{tr1: transition | Base_Trans(tr1) = tr1} -> bool],
             (IMPORTING astral_basic) time: TYPE,
             Entry_No_Parms: [{tr1: transition | NOT Has_Parms(
                 Base_Trans(tr1))} -> [astral_basic.time -> bool]],
             Exit_No_Parms: [{tr1: transition | NOT Has_Parms(
                 Base_Trans(tr1))} -> [astral_basic.time -> bool]],
             Entry_Parms: [[{tr1: transition | Has_Parms(Base_Trans(tr1))},
                 parameter] -> [astral_basic.time -> bool]],
             Exit_Parms: [[{tr1: transition | Has_Parms(Base_Trans(tr1))},
                 parameter] -> [astral_basic.time -> bool]]
]: THEORY

BEGIN

    ASSUMING
        base_of_base: ASSUMPTION
            (FORALL (tr1: transition):
                Base_Trans(Base_Trans(tr1)) = Base_Trans(tr1))
    ENDASSUMING

    IMPORTING astral_trans[transition, parameter, Duration, Base_Trans,
                           Has_Parms, Exported]

    tr1: VAR transition
    t1: VAR astral_basic.time

    % definition of Entry
    Entry(tr1, t1): bool =
        IF Has_Parms(Base_Trans(tr1)) THEN
            IF Exported(Base_Trans(tr1)) THEN
                Issued_Call(Base_Trans(tr1), t1) IMPLIES
                    Entry_Parms(tr1, Call_Parms(Base_Trans(tr1),
                        Call1(Base_Trans(tr1))(t1)))(t1)
            ELSE
                Fired(tr1, t1) IMPLIES
                    Entry_Parms(tr1, Fire_Parms(Base_Trans(tr1), t1))(t1)
            ENDIF
        ELSE Entry_No_Parms(tr1)(t1)
        ENDIF

    % definition of Exit
    Exit(tr1: transition, t1: {t1 | t1 >= Duration(tr1)}): bool =
        IF Has_Parms(Base_Trans(tr1)) THEN
            IF Exported(Base_Trans(tr1)) THEN
                Issued_Call(Base_Trans(tr1), t1 - Duration(tr1)) IMPLIES
                    Exit_Parms(tr1, Call_Parms(Base_Trans(tr1),
                        Call1(Base_Trans(tr1))(t1 - Duration(tr1))))(t1)
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            ELSE
                Fired(tr1, t1 - Duration(tr1)) IMPLIES
                    Exit_Parms(tr1, Fire_Parms(Base_Trans(tr1),
                        t1 - Duration(tr1)))(t1)
            ENDIF
        ELSE Exit_No_Parms(tr1)(t1)
        ENDIF

    % definition of Enabled
    Enabled(tr1, t1): bool =
        (Exported(Base_Trans(tr1)) IMPLIES
            Issued_Call(Base_Trans(tr1), t1)) AND
        IF Has_Parms(Base_Trans(tr1)) THEN
            IF Exported(Base_Trans(tr1)) THEN
                Entry_Parms(tr1, Call_Parms(Base_Trans(tr1),
                    Call1(Base_Trans(tr1))(t1)))(t1)
            ELSE
                (EXISTS (p1: parameter):
                    Entry_Parms(tr1, p1)(t1))
            ENDIF
        ELSE Entry_No_Parms(tr1)(t1)
        ENDIF

    % definition of Enabled_Set
    Enabled_Set(t1): set[transition] =
        {tr1 | Enabled(tr1, t1)}

END astral_trans_ext
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Appendix B:  ASTRAL Elevator System Specification

SPECIFICATION Elevator_System
GLOBAL SPECIFICATION Elevator_System

PROCESSES
the_elevator: Elevator,
the_elevator_buttons: Elevator_Button_Panel,
the_floor_buttons: array [1..n_floors] of Floor_Button_Panel

TYPE
pos_integer: TYPEDEF i: integer (i > 0),
floor: TYPEDEF i: pos_integer (i ≤ n_floors)

CONSTANT
n_floors: pos_integer,
move_dur, arrive_dur, open_dur, close_dur, door_stop_dur: time,
request_dur, clear_dur: time,
t_service_request, t_move, t_stop, t_move_door: time

AXIOM
/* t_service_request must be big enough to handle the worst case.  One instance of the
worst case is when the elevator is moving up from floor 1 to 2 and 2 has not been requested
on the elevator panel nor has any request been made on 2’s button panel.  Let tarrive be the
next time such that End(arrive, tarrive).  up_request and down_request are simultaneously
called on floor 2 an “instant” after tarrive-2*request_dur and down_request fires first.  In
addition, every floor in the building (besides 2) has up_requested (except the top floor) and
down_requested (except the bottom floor).  Thus, the up request is not posted in time for
the elevator to service it and the elevator must stop and open the door at every floor up to
the top, back down to the bottom, and back up to 2.  The maximum time possible to spend
on any floor when a request is outstanding elsewhere in the building is spent once on floors
1, 2, and n_floors, and twice on every other floor, hence 2*n_floors-3.  Additionally,
2*request_dur + move_dur + t_move + arrive_dur elapses before the elevator initially
reaches floor 3 and open_dur + t_move_door + door_stop_dur elapses on floor 2 before the
door is fully opened when 2 is eventually reached again with the elevator traveling upward.
*/
(t_service_request ≥

2 * request_dur + move_dur + t_move + arrive_dur +
(2 * n_floors - 3) * ( open_dur + t_move_door + door_stop_dur +

t_stop + close_dur + t_move_door +
door_stop_dur + request_dur + move_dur +
t_move + arrive_dur) +

open_dur + t_move_door + door_stop_dur)
/* clear_request must be able to fire no matter how many requests are made while the
elevator door is opening */

& (clear_dur + n_floors * request_dur < t_move_door)
/* must be at least 2 floors in the building */

& (n_floors ≥ 2)

ENVIRONMENT
/* assume that down arrow on first floor and up arrow on top floor have been physically
covered and short circuited so that they are not available to the environment */

~the_floor_buttons[1].Call(request_down, now)
& ~the_floor_buttons[n_floors].Call(request_up, now)

/* multiple button pushes should have no effect */
& (FORALL f: floor

( Change(the_elevator_buttons.floor_requested(f), now)
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& ~the_elevator_buttons.floor_requested(f)
→ FORALL t: time

( t ≥ the_elevator_buttons.Start(request_floor(f))
→ ~the_elevator_buttons.Call(request_floor(f), t))))

& (FORALL f: floor
( Change(the_floor_buttons[f].up_requested, now)
& ~the_floor_buttons[f].up_requested

→ FORALL t: time
( t ≥ the_floor_buttons[f].Start(request_up)

→ ~the_floor_buttons[f].Call(request_up, t))))
& (FORALL f: floor

( Change(the_floor_buttons[f].down_requested, now)
& ~the_floor_buttons[f].down_requested

→ FORALL t: time
( t ≥ the_floor_buttons[f].Start(request_down)

→ ~the_floor_buttons[f].Call(request_down, t))))
/* requests cannot be made of the elevator to stop at a floor from when the door starts
opening on that floor until the door is fully closed */

& ( Change(the_elevator.door_open, now)
& ~the_elevator.door_open

→ FORALL t: time
( t ≥ Change2(the_elevator.door_moving)

→
~the_elevator_buttons.Call(request_floor(the_elevator.position), t)

& ( past(the_elevator.going_up, t)
&

~the_floor_buttons[the_elevator.position].Call(request_up, t)
| past(~the_elevator.going_up, t)
&

~the_floor_buttons[the_elevator.position].Call(request_down, t))))
SCHEDULE

/* any request must be serviced within time t_service_request */
FORALL f: floor

( (the_elevator_buttons.Call(request_floor(f), now - t_service_request)
→ EXISTS t: time

( t > now - t_service_request
& past(the_elevator.position, t) = f
& Change(the_elevator.door_open, t)
& past(the_elevator.door_open, t)))

& (the_floor_buttons[f].Call(request_up, now - t_service_request)
→ EXISTS t: time

( t > now - t_service_request
& past(the_elevator.position, t) = f
& Change(the_elevator.door_open, t)
& past(the_elevator.door_open, t)
& past(the_elevator.going_up, t)))

& (the_floor_buttons[f].Call(request_down, now - t_service_request)
→ EXISTS t: time

( t > now - t_service_request
& past(the_elevator.position, t) = f
& Change(the_elevator.door_open, t)
& past(the_elevator.door_open, t)
& past(~the_elevator.going_up, t))))



32

ENDElevator_System

PROCESS SPECIFICATION Elevator
LEVEL Top_Level

IMPORT
floor, move_dur, arrive_dur, open_dur, close_dur, request_dur, door_stop_dur,
t_stop, t_move, t_move_door, the_elevator_buttons, the_floor_buttons,
the_elevator_buttons.floor_requested, the_floor_buttons.up_requested,
the_floor_buttons.down_requested

EXPORT
position, going_up, door_open, moving, door_moving

VARIABLE
position: floor,
going_up, door_open, moving, door_moving: boolean

DEFINE
request_above(f0: floor): boolean ==

EXISTS f: floor
( f > f0
& ( the_elevator_buttons.floor_requested(f)

| the_floor_buttons[f].up_requested
| the_floor_buttons[f].down_requested)),

request_below(f0: floor): boolean ==
EXISTS f: floor

( f < f0
& ( the_elevator_buttons.floor_requested(f)

| the_floor_buttons[f].up_requested
| the_floor_buttons[f].down_requested))

INITIAL
position = 1

& going_up
& ~door_open
& ~moving
& ~door_moving

INVARIANT
/* the elevator door must stay closed while the elevator is moving */
(moving → ~door_open & ~door_moving)
/* if the elevator is moving in some direction, then there must be an outstanding request
in that direction */

& (moving & going_up → request_above(position))
& (moving & ~going_up → request_below(position))

CONSTRAINT
/* if the elevator changes direction, there cannot be an outstanding request in the old
direction */
(going_up & ~going_up′ → ~request_below′(position′))

& (~going_up & going_up′ → ~request_above′(position′))

TRANSITION move_up
ENTRY [TIME: move_dur]

~door_open
& ~door_moving
& request_above(position)
& ( going_up

| ~going_up
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& ~request_below(position)
& ~the_floor_buttons[position].up_requested)

& ( End(arrive, now)
& ~the_elevator_buttons.floor_requested(position)
& ~the_floor_buttons[position].up_requested
| FORALL t, t1: time

( Change(moving, t) & Change(door_open, t1)
→ t < t1 & now ≥ t1 + request_dur))

EXIT
moving

& going_up
TRANSITION move_down

ENTRY [TIME: move_dur]
~door_open

& ~door_moving
& request_below(position)
& ( ~going_up

| going_up
& ~request_above(position)
& ~the_floor_buttons[position].down_requested)

& ( End(arrive, now)
& ~the_elevator_buttons.floor_requested(position)
& ~the_floor_buttons[position].down_requested
| FORALL t, t1: time

( Change(moving, t) & Change(door_open, t1)
→ t < t1 & now ≥ t1 + request_dur))

EXIT
moving

& ~going_up
TRANSITION arrive

ENTRY [TIME: arrive_dur]
moving

& now - t_move ≥ Change(moving)
EXIT

going_up′ & position = position′ + 1
| ~going_up′ & position = position′ - 1

TRANSITION open_door
ENTRY [TIME: open_dur]

~door_open
& ~door_moving
& ( ~moving

| moving
& EXISTS t: time

( Change(position, t)
& t > Change(moving)))

& ( the_elevator_buttons.floor_requested(position)
| going_up
& ( the_floor_buttons[position].up_requested

| ~request_above(position)
& the_floor_buttons[position].down_requested)

| ~going_up
& ( the_floor_buttons[position].down_requested

| ~request_below(position)
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& the_floor_buttons[position].up_requested))
EXIT

~moving
& door_moving
& going_up = ( going_up′

& (
request_above′(position′)

|
the_floor_buttons[position′].up_requested′)

| ~request_below′(position′)
&

~the_floor_buttons[position′].down_requested′)
TRANSITION close_door

ENTRY [TIME: close_dur]
door_open

& ~door_moving
& now - t_stop ≥ Change(door_open)

EXIT
door_moving

TRANSITION door_stop
ENTRY [TIME: door_stop_dur]

door_moving
& now - t_move_door ≥ Change(door_moving)

EXIT
~door_moving

& door_open = ~door_open′
END Top_Level

ENDElevator

PROCESS SPECIFICATION Elevator_Button_Panel
LEVEL Top_Level

IMPORT
floor, request_dur, clear_dur, the_elevator, the_elevator.position,
the_elevator.door_open, the_elevator.door_moving

EXPORT
floor_requested, request_floor

VARIABLE
floor_requested(floor): boolean

INITIAL
FORALL f: floor (~floor_requested(f))

TRANSITION request_floor(f: floor)
ENTRY [TIME: request_dur]

~floor_requested(f)
EXIT

floor_requested(f) Becomes True
TRANSITION clear_floor_request

ENTRY [TIME: clear_dur]
floor_requested(the_elevator.position)

& ~the_elevator.door_open
& the_elevator.door_moving

EXIT
floor_requested(the_elevator.position) Becomes False

END Top_Level
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ENDElevator_Button_Panel

PROCESS SPECIFICATION Floor_Button_Panel
LEVEL Top_Level

IMPORT
request_dur, clear_dur, the_floor_buttons, the_elevator, the_elevator.position,
the_elevator.door_open, the_elevator.going_up, the_elevator.door_moving

EXPORT
up_requested, down_requested, request_up, request_down

VARIABLE
up_requested, down_requested: boolean

INITIAL
~up_requested

& ~down_requested
TRANSITION request_up

ENTRY [TIME: request_dur]
~up_requested

EXIT
up_requested

TRANSITION request_down
ENTRY [TIME: request_dur]

~down_requested
EXIT

down_requested
TRANSITION clear_up_request

ENTRY [TIME: clear_dur]
up_requested

& the_floor_buttons[the_elevator.position] = Self
& the_elevator.going_up
& ~the_elevator.door_open
& the_elevator.door_moving

EXIT
~up_requested

TRANSITION clear_down_request
ENTRY [TIME: clear_dur]

down_requested
& the_floor_buttons[the_elevator.position] = Self
& ~the_elevator.going_up
& ~the_elevator.door_open
& the_elevator.door_moving

EXIT
~down_requested

END Top_Level
ENDFloor_Button_Panel

END Elevator_System
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Appendix C:  PVS Elevator System Global Specification

global: THEORY

BEGIN

astral_lib: LIBRARY = "/fs/rsl/pkgs/kolano/research/pvs/astral2"

IMPORTING astral_lib@astral_defs

% The following IMPORTING clause must be filled out if set_size is
% used on a global set type.  Check definition of cardinality in
% pvs/lib/cardinality/cardinality.pvs for information on the parameters
% required to instantiate cardinality
% IMPORTING astral_lib@astral_set_card[T, m, f]

process: TYPE = {elevator, elevator_button_panel, floor_button_panel}

id: NONEMPTY_TYPE

i_transition: TYPE = {i_request_floor, i_request_up, i_request_down}

the_elevator: id

the_elevator_buttons: id

pos_integer: TYPE = {i: integer | ((const(i)) > (const(0)))(0)}

n_floors: pos_integer

the_floor_buttons: [{I1: int | I1 >= 1 AND I1 <= n_floors} -> id]

Id_Type(ID1: [time -> id])(T1: time): process =
IF ID1(T1) = the_elevator

THEN elevator
ELSIF ID1(T1) = the_elevator_buttons

THEN elevator_button_panel
ELSE floor_button_panel
ENDIF

floor: TYPE = {i: pos_integer | ((const(i)) <= (const(n_floors)))(0)}

pos_real: TYPE = {r: real | ((const(r)) > (const(0)))(0)}

i_parameter: TYPE = [# i_request_floor__f: floor #]

i_undef_parm: i_parameter

i_position: [id -> [time -> floor]]

i_going_up: [id -> [time -> boolean]]

i_door_open: [id -> [time -> boolean]]
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i_moving: [id -> [time -> boolean]]

i_door_moving: [id -> [time -> boolean]]

i_floor_requested: [id -> [[floor] -> [time -> boolean]]]

i_up_requested: [id -> [time -> boolean]]

i_down_requested: [id -> [time -> boolean]]

IMPORTING astral_lib@astral_i_trans[id, i_transition, i_parameter]

i_Eval_Parms(ID1: id, ITR1: i_transition, N1: nat,
P1: [time -> i_parameter], T1: time): RECURSIVE bool =
(IF N1 = 0 THEN TRUE
 ELSE (EXISTS (T2: time):

T2 <= T1 AND
Call1(const(ID1), ITR1, const(T2))(T1)) AND

 CASES ITR1 OF
i_request_floor:

IF N1 = 1 THEN i_request_floor__f(P1(T1)) =
i_request_floor__f(i_Call_Parms(ID1, ITR1, Call1(const(ID1), ITR1)(T1)))

ELSE TRUE
ENDIF
ELSE TRUE

ENDCASES AND
i_Eval_Parms(ID1, ITR1, N1 - 1, P1, T1)
ENDIF)

MEASURE (LAMBDA (ID1: id, ITR1: i_transition, N1: nat,
P1: [time -> i_parameter], T1: time): N1)

IMPORTING astral_lib@astral_i_trans_parm[id, i_transition, i_parameter, time, i_Eval_Parms]

move_dur: pos_real

arrive_dur: pos_real

open_dur: pos_real

close_dur: pos_real

door_stop_dur: pos_real

request_dur: pos_real

clear_dur: pos_real

t_service_request: pos_real

t_move: pos_real

t_stop: pos_real
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t_move_door: pos_real

global_axiom: AXIOM
((((const(t_service_request)) >= (((((const(2)) * (const(n_floors))) - (const(2))) *
((((((((const(t_move_door)) + (const(door_stop_dur))) + (const(move_dur))) +
(const(t_move))) + (const(arrive_dur))) + (const(open_dur))) + (const(t_move_door))) +
(const(door_stop_dur)))) + ((((const(2)) * (const(n_floors))) - (const(3))) *
((const(t_stop)) + (const(close_dur)))))) AND (((const(clear_dur)) + ((const(n_floors)) *
(const(request_dur)))) < (const(t_move_door)))) AND ((const(n_floors)) >=
(const(2))))(0)

id_domain: AXIOM
(FORALL (ID1: id):

ID1 = the_elevator OR
ID1 = the_elevator_buttons OR
(EXISTS (I1: {K1: int | K1 >= 1 AND K1 <= n_floors}):

ID1 = the_floor_buttons(I1)))

id_unique: AXIOM
the_elevator /= the_elevator_buttons AND
(FORALL (I1: {K1: int | K1 >= 1 AND K1 <= n_floors}):

the_elevator /= the_floor_buttons(I1)) AND
(FORALL (I1: {K1: int | K1 >= 1 AND K1 <= n_floors}):

the_elevator_buttons /= the_floor_buttons(I1)) AND
(FORALL (I1, J1: {K1: int | K1 >= 1 AND K1 <= n_floors}):

the_floor_buttons(I1) = the_floor_buttons(J1) IMPLIES
I1 = J1) AND

TRUE

END global



39

Appendix D:  PVS Elevator Specification

elevator: THEORY

BEGIN

IMPORTING global

% The following IMPORTING clause must be filled out if set_size is
% used on a local set type.  Check definition of cardinality in
% pvs/lib/cardinality/cardinality.pvs for information on the parameters
% required to instantiate cardinality
% IMPORTING astral_lib@astral_set_card[T, m, f]

self: {ID1: id | Id_Type(const(ID1))(0) = elevator}

transition: TYPE = {move_up, move_down, arrive, open_door, close_door, door_stop}

parameter: TYPE = [# DUMMY: int #]

undef_parm: parameter

position: [time -> floor]

going_up: [time -> boolean]

door_open: [time -> boolean]

moving: [time -> boolean]

door_moving: [time -> boolean]

request_above(f0: floor): [time -> boolean] =
(EX! (f: [time -> floor]): ((f) > (const(f0))) AND ((((LAMBDA (T1: time):

i_floor_requested((const(the_elevator_buttons))(T1))((f)(T1))(T1))) OR ((LAMBDA
(T1: time): i_up_requested(((LAMBDA (T1: time):
the_floor_buttons((f)(T1))))(T1))(T1)))) OR ((LAMBDA (T1: time):
i_down_requested(((LAMBDA (T1: time): the_floor_buttons((f)(T1))))(T1))(T1)))))

request_below(f0: floor): [time -> boolean] =
(EX! (f: [time -> floor]): ((f) < (const(f0))) AND ((((LAMBDA (T1: time):

i_floor_requested((const(the_elevator_buttons))(T1))((f)(T1))(T1))) OR ((LAMBDA
(T1: time): i_up_requested(((LAMBDA (T1: time):
the_floor_buttons((f)(T1))))(T1))(T1)))) OR ((LAMBDA (T1: time):
i_down_requested(((LAMBDA (T1: time): the_floor_buttons((f)(T1))))(T1))(T1)))))

Vars_No_Change(T1: time, T2: time): bool =
Var_No_Change(position, T1, T2) AND
Var_No_Change(going_up, T1, T2) AND
Var_No_Change(door_open, T1, T2) AND
Var_No_Change(moving, T1, T2) AND
Var_No_Change(door_moving, T1, T2)
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Base_Trans(TR1: transition): transition =
TR1

Duration(TR1: transition): posreal =
CASES TR1 OF

move_up: move_dur,
move_down: move_dur,
arrive: arrive_dur,
open_door: open_dur,
close_door: close_dur,
door_stop: door_stop_dur

ENDCASES

Exported(BTR1: {TR1: transition | Base_Trans(TR1) = TR1}): bool =
FALSE

Has_Parms(BTR1: {TR1: transition | Base_Trans(TR1) = TR1}): bool =
FALSE

IMPORTING astral_lib@astral_trans[transition, parameter, Duration, Base_Trans,
Has_Parms, Exported]

Entry_No_Parms(TR1: {tr: transition | NOT Has_Parms(Base_Trans(tr))}):
[time -> bool] =

CASES TR1 OF
move_up:

((((NOT (door_open)) AND (NOT (door_moving))) AND ((LAMBDA (T1: time):
request_above((position)(T1))(T1)))) AND ((going_up) OR (((NOT (going_up)) AND
(NOT ((LAMBDA (T1: time): request_below((position)(T1))(T1))))) AND (NOT
((LAMBDA (T1: time): i_up_requested(((LAMBDA (T1: time):
the_floor_buttons((position)(T1))))(T1))(T1))))))) AND ((((End1(arrive, now)) AND
(NOT ((LAMBDA (T1: time):
i_floor_requested((const(the_elevator_buttons))(T1))((position)(T1))(T1))))) AND
(NOT ((LAMBDA (T1: time): i_up_requested(((LAMBDA (T1: time):
the_floor_buttons((position)(T1))))(T1))(T1))))) OR ((FA! (t: [time -> time]): FA! (t1:
[time -> time]): ((Change1(moving, t)) AND (Change1(door_open, t1))) IMPLIES (((t)
< (t1)) AND ((now) >= ((t1) + (const(request_dur)))))))),

move_down:
((((NOT (door_open)) AND (NOT (door_moving))) AND ((LAMBDA (T1: time):

request_below((position)(T1))(T1)))) AND ((NOT (going_up)) OR (((going_up) AND
(NOT ((LAMBDA (T1: time): request_above((position)(T1))(T1))))) AND (NOT
((LAMBDA (T1: time): i_down_requested(((LAMBDA (T1: time):
the_floor_buttons((position)(T1))))(T1))(T1))))))) AND ((((End1(arrive, now)) AND
(NOT ((LAMBDA (T1: time):
i_floor_requested((const(the_elevator_buttons))(T1))((position)(T1))(T1))))) AND
(NOT ((LAMBDA (T1: time): i_down_requested(((LAMBDA (T1: time):
the_floor_buttons((position)(T1))))(T1))(T1))))) OR ((FA! (t: [time -> time]): FA! (t1:
[time -> time]): ((Change1(moving, t)) AND (Change1(door_open, t1))) IMPLIES (((t)
< (t1)) AND ((now) >= ((t1) + (const(request_dur)))))))),

arrive:
(moving) AND (((now) - (const(t_move))) >= (Change1(moving))),

open_door:
(((NOT (door_open)) AND (NOT (door_moving))) AND ((NOT (moving)) OR ((moving) AND ((FA! (t:

[time -> time]): FA! (t1: [time -> time]): ((Change1(position, t)) AND
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(Change1(moving, t1))) IMPLIES ((t) > (t1))))))) AND ((((LAMBDA (T1: time):
i_floor_requested((const(the_elevator_buttons))(T1))((position)(T1))(T1))) OR
((going_up) AND (((LAMBDA (T1: time): i_up_requested(((LAMBDA (T1: time):
the_floor_buttons((position)(T1))))(T1))(T1))) OR ((NOT ((LAMBDA (T1: time):
request_above((position)(T1))(T1)))) AND ((LAMBDA (T1: time):
i_down_requested(((LAMBDA (T1: time):
the_floor_buttons((position)(T1))))(T1))(T1))))))) OR ((NOT (going_up)) AND
(((LAMBDA (T1: time): i_down_requested(((LAMBDA (T1: time):
the_floor_buttons((position)(T1))))(T1))(T1))) OR ((NOT ((LAMBDA (T1: time):
request_below((position)(T1))(T1)))) AND ((LAMBDA (T1: time):
i_up_requested(((LAMBDA (T1: time):
the_floor_buttons((position)(T1))))(T1))(T1))))))),

close_door:
((door_open) AND (NOT (door_moving))) AND (((now) - (const(t_stop))) >= (Change1(door_open))),

door_stop:
(door_moving) AND (((now) - (const(t_move_door))) >= (Change1(door_moving)))

ENDCASES

Entry_Parms(TR1: {tr: transition | Has_Parms(Base_Trans(tr))}, P1: parameter):
[time -> bool] =

const(TRUE)

Exit_No_Parms(TR1: {tr: transition | NOT Has_Parms(Base_Trans(tr))})
(T1: {T1: time | T1 >= Duration(TR1)}): bool =

(CASES TR1 OF
move_up:

((moving) AND (going_up)) AND (LAMBDA (T1: time): position(T1) = position(T1 -
Duration(move_up))) AND (LAMBDA (T1: time): door_open(T1) = door_open(T1 -
Duration(move_up))) AND (LAMBDA (T1: time): door_moving(T1) =
door_moving(T1 - Duration(move_up))),

move_down:
((moving) AND (NOT (going_up))) AND (LAMBDA (T1: time): position(T1) = position(T1 -

Duration(move_down))) AND (LAMBDA (T1: time): door_open(T1) = door_open(T1 -
Duration(move_down))) AND (LAMBDA (T1: time): door_moving(T1) =
door_moving(T1 - Duration(move_down))),

arrive:
((((LAMBDA (T1: time): going_up(T1 - Duration(arrive)))) AND ((position) = (((LAMBDA (T1: time):

position(T1 - Duration(arrive)))) + (const(1))))) OR ((NOT ((LAMBDA (T1: time):
going_up(T1 - Duration(arrive))))) AND ((position) = (((LAMBDA (T1: time):
position(T1 - Duration(arrive)))) - (const(1)))))) AND (LAMBDA (T1: time):
going_up(T1) = going_up(T1 - Duration(arrive))) AND (LAMBDA (T1: time):
door_open(T1) = door_open(T1 - Duration(arrive))) AND (LAMBDA (T1: time):
moving(T1) = moving(T1 - Duration(arrive))) AND (LAMBDA (T1: time):
door_moving(T1) = door_moving(T1 - Duration(arrive))),

open_door:
(((NOT (moving)) AND (door_moving)) AND ((going_up) = ((((LAMBDA (T1: time): going_up(T1 -

Duration(open_door)))) AND (((LAMBDA (T1: time):
request_above((position)(T1))(T1 - Duration(open_door)))) OR ((LAMBDA (T1: time):
i_up_requested(((LAMBDA (T1: time): the_floor_buttons((position)(T1))))(T1))(T1 -
Duration(open_door)))))) OR ((NOT ((LAMBDA (T1: time):
request_below((position)(T1))(T1 - Duration(open_door))))) AND (NOT ((LAMBDA
(T1: time): i_down_requested(((LAMBDA (T1: time):
the_floor_buttons((position)(T1))))(T1))(T1 - Duration(open_door))))))))) AND
(LAMBDA (T1: time): door_open(T1) = door_open(T1 - Duration(open_door))),
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close_door:
(door_moving) AND (LAMBDA (T1: time): position(T1) = position(T1 - Duration(close_door))) AND

(LAMBDA (T1: time): going_up(T1) = going_up(T1 - Duration(close_door))) AND
(LAMBDA (T1: time): door_open(T1) = door_open(T1 - Duration(close_door))) AND
(LAMBDA (T1: time): moving(T1) = moving(T1 - Duration(close_door))),

door_stop:
((NOT (door_moving)) AND ((door_open) = (NOT ((LAMBDA (T1: time): door_open(T1 -

Duration(door_stop))))))) AND (LAMBDA (T1: time): position(T1) = position(T1 -
Duration(door_stop))) AND (LAMBDA (T1: time): going_up(T1) = going_up(T1 -
Duration(door_stop))) AND (LAMBDA (T1: time): moving(T1) = moving(T1 -
Duration(door_stop)))
ENDCASES)(T1)

Exit_Parms(TR1: {tr: transition | Has_Parms(Base_Trans(tr))}, P1: parameter)
(T1: {T1: time | T1 >= Duration(TR1)}): bool =

TRUE

IMPORTING astral_lib@astral_trans_ext[transition, parameter, Duration,
Base_Trans, Has_Parms, Exported, time, Entry_No_Parms, Exit_No_Parms,
Entry_Parms, Exit_Parms]

Initial: [time -> bool] =
(((((position) = (const(1))) AND (going_up)) AND (NOT (door_open))) AND (NOT
(moving))) AND (NOT (door_moving))

Environment: [time -> bool] =
const(TRUE)

Imported_Variable: [time -> bool] =
const(TRUE)

Invariant: [time -> bool] =
const(TRUE)

Schedule: [time -> bool] =
const(TRUE)

Constraint(T1: time): bool =
(FORALL (TR1: transition):

End1(TR1, const(T1))(T1) IMPLIES
((((going_up) AND (NOT ((LAMBDA (T1: time): going_up(T1 -

Duration(TR1)))))) IMPLIES (NOT ((LAMBDA (T1: time): request_below(((LAMBDA
(T1: time): position(T1 - Duration(TR1))))(T1))(T1 - Duration(TR1)))))) AND (((NOT
(going_up)) AND ((LAMBDA (T1: time): going_up(T1 - Duration(TR1))))) IMPLIES
(NOT ((LAMBDA (T1: time): request_above(((LAMBDA (T1: time): position(T1 -
Duration(TR1))))(T1))(T1 - Duration(TR1)))))))(T1))

Further_Environment_1: [time -> bool] =
const(TRUE)

Constant_Refinement_1: [time -> bool] =
const(TRUE)

Elgible_Set_1(T1: time): set[transition] =
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Enabled_Set(T1)

Transition_Selection_1(T1: time): bool =
(FORALL (TR1: transition):

Fired(TR1, T1) IMPLIES member(TR1, Elgible_Set_1(T1)))

local_axiom: AXIOM
(const(TRUE))(0)

self_imports: AXIOM
i_position(self) = position AND
i_going_up(self) = going_up AND
i_door_open(self) = door_open AND
i_moving(self) = moving AND
i_door_moving(self) = door_moving

END elevator
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Appendix E:  PVS Elevator Local Proof Obligations

elevator_obl: THEORY

BEGIN

IMPORTING elevator
IMPORTING astral_lib@astral_axioms[transition, time, Base_Trans,

Duration, Exported, Issued_Call, Entry, Exit, Enabled, Fired,
Initial, Vars_No_Change]

t0: time
t1, t2: VAR time

% local invariant base case
elevator_inv_base: THEOREM

Invariant(0)

% local invariant induction case
elevator_inv_ind: THEOREM

(FORALL (t1): t1 <= t0 IMPLIES Invariant(t1)) IMPLIES
(FORALL (t2): t2 > t0 IMPLIES Invariant(t2))

% constraint
elevator_con: THEOREM

(FORALL (t1): Constraint(t1))

% local schedule base case
elevator_sch_base_1: THEOREM

Invariant(0) AND
Environment(0) AND
Further_Environment_1(0) AND
Constant_Refinement_1(0) AND
Transition_Selection_1(0) IMPLIES

Schedule(0)

% local schedule induction case
elevator_sch_ind_1: THEOREM

(FORALL (t1):
Invariant(t1) AND
Environment(t1) AND
Further_Environment_1(t1) AND
Constant_Refinement_1(t1) AND
Transition_Selection_1(t1)) AND

(FORALL (t1): t1 <= t0 IMPLIES Schedule(t1)) IMPLIES
(FORALL (t2): t2 > t0 IMPLIES Schedule(t2))

END elevator_obl


